Abstract
Abstract
Galaxy stellar mass is known to be monotonically related to the size of the galaxy’s globular cluster (GC) population for Milky Way sized and larger galaxies. However, the relation becomes ambiguous for dwarf galaxies, where there is some evidence for a downturn in GC population size at low galaxy masses. Smaller dwarfs are increasingly likely to have no GCs, and these zeros cannot be easily incorporated into linear models. We introduce the Hierarchical Errors-in-variables ERrors-in-variables BAyesian Lognormal hurdle (HERBAL) model to represent the relationship between dwarf galaxies and their GC populations, and apply it to the sample of Local Group galaxies, where the luminosity range coverage is maximal. This bimodal model accurately represents the two populations of dwarf galaxies: those that have GCs and those that do not. Our model thoroughly accounts for all uncertainties, including measurement uncertainty, uncertainty in luminosity to stellar mass conversions, and intrinsic scatter. The hierarchical nature of our Bayesian model also allows us to estimate galaxy masses and individual mass-to-light ratios from luminosity data within the model. We find that 50% of galaxies are expected to host GC populations at a stellar mass of
log
10
(
M
*
)
=
6.996
, and that the expected mass of GC populations remains linear down to the smallest galaxies. Our hierarchical model recovers an accurate estimate of the Milky Way stellar mass. Under our assumed error model, we find a nonzero intrinsic scatter of
0.59
−
0.21
+
0.3
(95% credible interval) that should be accounted for in future models.
Funder
Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献