The HERBAL Model: A Hierarchical Errors-in-variables Bayesian Lognormal Hurdle Model for Galactic Globular Cluster Populations

Author:

Berek Samantha C.ORCID,Eadie Gwendolyn M.ORCID,Speagle 沈 Joshua S. 佳士ORCID,Harris William E.ORCID

Abstract

Abstract Galaxy stellar mass is known to be monotonically related to the size of the galaxy’s globular cluster (GC) population for Milky Way sized and larger galaxies. However, the relation becomes ambiguous for dwarf galaxies, where there is some evidence for a downturn in GC population size at low galaxy masses. Smaller dwarfs are increasingly likely to have no GCs, and these zeros cannot be easily incorporated into linear models. We introduce the Hierarchical Errors-in-variables ERrors-in-variables BAyesian Lognormal hurdle (HERBAL) model to represent the relationship between dwarf galaxies and their GC populations, and apply it to the sample of Local Group galaxies, where the luminosity range coverage is maximal. This bimodal model accurately represents the two populations of dwarf galaxies: those that have GCs and those that do not. Our model thoroughly accounts for all uncertainties, including measurement uncertainty, uncertainty in luminosity to stellar mass conversions, and intrinsic scatter. The hierarchical nature of our Bayesian model also allows us to estimate galaxy masses and individual mass-to-light ratios from luminosity data within the model. We find that 50% of galaxies are expected to host GC populations at a stellar mass of log 10 ( M * ) = 6.996 , and that the expected mass of GC populations remains linear down to the smallest galaxies. Our hierarchical model recovers an accurate estimate of the Milky Way stellar mass. Under our assumed error model, we find a nonzero intrinsic scatter of 0.59 0.21 + 0.3 (95% credible interval) that should be accounted for in future models.

Funder

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3