pygwb: A Python-based Library for Gravitational-wave Background Searches

Author:

Renzini Arianna I.ORCID,Romero-Rodríguez AlbaORCID,Talbot ColmORCID,Lalleman MaxORCID,Kandhasamy ShivarajORCID,Turbang KevinORCID,Biscoveanu SylviaORCID,Martinovic KatarinaORCID,Meyers PatrickORCID,Tsukada Leo,Janssens KamielORCID,Davis DerekORCID,Matas Andrew,Charlton PhilipORCID,Liu Guo-Chin,Dvorkin IrinaORCID,Banagiri SharanORCID,Bose Sukanta,Callister ThomasORCID,De Lillo Federico,D’Onofrio Luca,Garufi Fabio,Harry Gregg,Lawrence Jessica,Mandic Vuk,Macquet Adrian,Michaloliakos Ioannis,Mitra Sanjit,Pham Kiet,Poggiani Rosa,Regimbau TaniaORCID,Romano Joseph D.ORCID,van Remortel Nick,Zhong Haowen

Abstract

Abstract The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven characterization of such a signal will provide invaluable information about the evolution of the universe and the population of GW sources within it. We present a new, user-friendly, Python-based package for GW data analysis to search for an isotropic GWB in ground-based interferometer data. We employ cross-correlation spectra of GW detector pairs to construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the analysis to one’s own needs. We describe the individual modules that make up pygwb, following the traditional steps of stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline that combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO and Virgo observing run. We successfully recover all mock data injections and reproduce published results.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3