A Theoretical Study of Infrared Spectra of Highly Positively Charged C60 Fullerenes and Their Relevance to Observed UIE Features

Author:

Sadjadi SeyedAbdolrezaORCID,Parker Quentin AndrewORCID,Hsia Chih-HaoORCID,Zhang YongORCID

Abstract

Abstract By applying first principles quantum chemical calculations, we present a complete catalog of the theoretically expected mid-infrared signatures of cationic forms of fullerene with the general formula of C 60 q + (q = 1–26). The structural stability and bonding of these exotic species have been reported by us elsewhere. It is found that not only can some of these cations contribute significantly to the flux of the 17.4 and 18.9 μm bands of fullerene that are observed in some planetary nebulae but they also show strong bands that match the position of key astronomical unidentified infrared emission at 11.21, 16.40 and 20–21 μm, which makes them key species for identification. It is also found that the IR signatures of the group of these cations with q = 1–6 are well separated from the 6.2 μm band that is associated with free/isolated aromatic hydrocarbon molecules. This is particularly important in the discrimination and exploration of the coexistence of complex hydrocarbon organics and fullerenes in astronomical sources. To provide insight into the effect of ionization on the IR spectrum of fullerene, particularly at the long-wavelength range, the quantitative analysis of the origin of key bands of these cations is presented. Finally, the potential target(s) among these species, specifically aromatic C 60 10 + , are discussed for further astrochemical observations.

Funder

Hong Kong Research Grants Council

Macau FDCT grant

The Science and Technology Development Fund, Macau SAR

National Science Foundation of China

China Manned Space Project

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3