Gas Morphology of Milky Way–like Galaxies in the TNG50 Simulation: Signals of Twisting and Stretching

Author:

Waters Thomas K.ORCID,Peterson ColtonORCID,Emami RaziehORCID,Shen XuejianORCID,Hernquist LarsORCID,Smith RandallORCID,Vogelsberger MarkORCID,Alcock CharlesORCID,Tremblay GrantORCID,Liska MatthewORCID,Forbes John C.ORCID,Moreno JorgeORCID

Abstract

Abstract We present an in-depth analysis of gas morphologies for a sample of 25 Milky Way–like galaxies from the IllustrisTNG TNG50 simulation. We constrain the morphology of cold, warm, hot gas, and gas particles as a whole using a local shell iterative method and explore its observational implications by computing the hard-to-soft X-ray ratio, which ranges between 10−3 and 10−2 in the inner ∼50 kpc of the distribution and 10−5–10−4 at the outer portion of the hot gas distribution. We group galaxies into three main categories: simple, stretched, and twisted. These categories are based on the radial reorientation of the principal axes of the reduced inertia tensor. We find that a vast majority (77%) of the galaxies in our sample exhibit twisting patterns in their radial profiles. Additionally, we present detailed comparisons between (i) the gaseous distributions belonging to individual temperature regimes, (ii) the cold gas distributions and stellar distributions, and (iii) the gaseous distributions and dark matter (DM) halos. We find a strong correlation between the morphological properties of the cold gas and stellar distributions. Furthermore, we find a correlation between gaseous distributions with a DM halo that increases with gas temperature, implying that we may use the warm–hot gaseous morphology as a tracer to probe the DM morphology. Finally, we show gaseous distributions exhibit significantly more prolate morphologies than the stellar distributions and DM halos, which we hypothesize is due to stellar and active galactic nucleus feedback.

Funder

National Science Foundation

NASA

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3