The Origin of Persistently Nonthermal Solar Wind Electrons: the Steady Electron Runaway Model's Demonstration of Dreicer Bifurcation using Measured E∥ and Ion–Electron Coulomb Drag

Author:

Scudder Jack D.ORCID

Abstract

Abstract The Steady Electron Runaway Model (SERM) develops the hypothesis that the solar wind’s observed ubiquitous nonthermal electron velocity distribution functions (eVDFs) are caused by Dreicer's velocity space bifurcation in the strong dimensionless E required by quasi-neutrality. SERM’s predicted partitions for the pressure and density are contrasted with appropriately adapted eVDF properties from the Wind 3DP experiment (1995–1998), based on in situ observations of E . The observed number fraction of electrons in runaway, δ 3DP, follows a thousandfold decline of Dreicer’s predicted fraction, δ, across the observed tenfold reduction of E , satisfying δ 3DPδ 0.89. SERM’s predictions are shown to reproduce the observed variations with E of the electron partial pressure and excess kurtosis, e . e and E are positively correlated across 4 yr, as expected by the SERM–Dreicer origin of the suprathermals. SERM quantitatively explains the observed 50 yr anticorrelation between δ 3DP and the partition slope temperature ratios. This documentation quantitatively establishes Coulomb runaway physics as the missing determinant of the ubiquitous nonthermal solar wind eVDF. Astrophysical plasmas, like stellar winds, are unavoidably inhomogeneous, requiring E to enforce quasi-neutrality. Between the stars E is expected to be sufficiently large that measurable runaway density fractions (0.1%–30%) will occur, producing widespread leptokurtic eVDFs. Using inhomogeneous two-fluid information, SERM predicts spatially dependent leptokurtic eVDF profiles consonant with Coulomb collisions and the fluid’s E (r). SERM can also comment on its eVDFs’ consistency with Maxwellians presumed in the Spitzer–Härm closure. The solar wind profile shows the implied strong radial gradient of the plasma eVDF’s transformation from near thermal to strongly leptokurtic across 1.5–6 R .

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3