Constraining Global Solar Models through Helioseismic Analysis

Author:

Stejko Andrey M.ORCID,Kosovichev Alexander G.ORCID,Featherstone Nicholas A.ORCID,Guerrero GustavoORCID,Hindman Bradley W.ORCID,Matilsky Loren I.ORCID,Warnecke JörnORCID

Abstract

Abstract Global hydrodynamic simulations of internal solar dynamics have focused on replicating the conditions for solar-like (equator rotating faster than the poles) differential rotation and meridional circulation using the results of helioseismic inversions as a constraint. Inferences of meridional circulation, however, have provided controversial results showing the possibility of one, two, or multiple cells along the radius. To help address this controversy and develop a more robust understanding of global flow regimes in the solar interior, we apply a “forward-modeling” approach to the analysis of helioseismic signatures of meridional circulation profiles obtained from numerical simulations. We employ the global acoustic modeling code GALE to simulate the propagation of acoustic waves through regimes of mean mass-flows generated by global hydrodynamic and magnetohydrodynamic models: EULAG, the Pencil code, and the Rayleigh code. These models are used to create synthetic Dopplergram data products, used as inputs for local time–distance helioseismology techniques. Helioseismic travel-time signals from solutions obtained through global numerical simulations are compared directly with inferences from solar observations, in order to set additional constraints on global model parameters in a direct way. We show that even though these models are able to replicate solar-like differential rotation, the resulting rotationally constrained convection develops a multicell global meridional circulation profile that is measurably inconsistent with local time–distance inferences of solar observations. However, we find that the development of rotationally unconstrained convection close to the model surface is able to maintain solar-like differential rotation, while having a significant impact on the helioseismic travel-time signal, replicating solar observations within one standard deviation of the error due to noise.

Funder

NASA

EC ∣ Horizon 2020 Framework Programme

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3