Turbulent Magnetic Reconnection as an Acceleration Mechanism in Earth’s Magnetotail

Author:

Sega Daniel D.ORCID,Ergun Robert E.ORCID

Abstract

Abstract Using electric and magnetic fields measured by the Magnetospheric Multiscale (MMS) mission, we construct a test-particle simulation of a turbulent magnetic reconnection region to investigate observed ion acceleration. We identify three types of energized ions: (1) ion jets, (2) Speiser-like energized ions—both of which carry significant energy but do not produce a strong energetic (>80 keV) tail in the ion distribution—and (3) a separate but sizable population of ions that are accelerated to significantly higher energies (>80 keV) by the turbulent fields. The majority of ions that undergo energization by the turbulent fields cross the magnetic null plane multiple times. By preferentially energizing these particles, the turbulence creates a separate population of ions that mostly exits in the dawn direction of the magnetotail and forms a high-energy power-law tail in the ion flux-energy distribution. We also find that the highest acceleration energies are limited by the size of the turbulent region (with respect to ion gyroradii). Since turbulence is widespread in astrophysical plasmas and has no a priori limit on scale size, the MMS observations suggest turbulence may have a significant role in particle acceleration.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3