Can Cuspy Dark-matter-dominated Halos Hold Cored Stellar Mass Distributions?

Author:

Sánchez Almeida JorgeORCID,Plastino Angel R.ORCID,Trujillo IgnacioORCID

Abstract

Abstract According to the current concordance cosmological model, dark matter (DM) particles are collisionless and produce self-gravitating structures with a central cusp, which, generally, is not observed. The observed density tends to a central plateau or core, explained within the cosmological model through the gravitational feedback of baryons on DM. This mechanism becomes inefficient when decreasing the galaxy’s stellar mass so that in the low-mass regime (M ≪ 106 M ) the energy provided by the baryons is insufficient to modify cusps into cores. Thus, if cores exist in these galaxies they have to reflect departures from the collisionless nature of DM. Measuring the DM mass distribution in these faint galaxies is extremely challenging; however, their stellar mass distribution can be characterized through deep photometry. Here we provide a way of using only the stellar mass distribution to constrain the underlying DM distribution. The so-called Eddington inversion method allows us to discard pairs of stellar distributions and DM potentials requiring (unphysical) negative distribution functions in the phase space. In particular, cored stellar density profiles are incompatible with the Navarro–Frenk–White (NFW) potential expected from collisionless DM if the velocity distribution is isotropic and the system spherically symmetric. Through a case-by-case analysis, we are able to relax these assumptions to consider anisotropic velocity distributions and systems that do not have exact cores. In general, stellar distributions with radially biased orbits are difficult to reconcile with NFW-like potentials, and cores in the baryon distribution tend to require cores in the DM distribution.

Funder

Ministerio de Ciencia e Innovación

EC ∣ European Regional Development Fund

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3