Kinetic Simulations of Proton Mirror Instability: Phase Relations and Thermodynamics

Author:

Chang C.-K.ORCID,Hau L.-N.ORCID

Abstract

Abstract Mirror-mode waves driven by the large temperature anisotropy of T /T ∣∣ > 1 have been widely observed in the solar wind, planetary magnetosheaths, heliosheath, etc. Recent studies have shown that the phase relations and thermodynamics of the mirror waves observed in the terrestrial magnetosheath may well be interpreted by the linear mixed kinetic–MHD theory of proton mirror instability. In particular, the energy laws possess the form of double-polytropic closures with the thermodynamic exponents being functions of β ⊥,∣∣ = p ⊥,∣∣/(B 2/2μ 0). In this study, we examine the time evolution of proton mirror instability based on the hybrid particle simulations for twenty sets of β ⊥,∣∣ values. Quantitative comparisons between the kinetic simulations, linear Vlasov theory, and observations are made in terms of the growth rates, phase relations, thermodynamic conditions, etc., which show high agreements. In particular, the dependences of various compressibility and thermodynamic exponents on β ⊥,∣∣ are confirmed by the kinetic simulations, which show that the polytropic exponents are in the ranges of γ = 0.64 ± 0.21, and γ ∣∣ = 1.07 ± 0.12 consistent with the theoretical predictions and mirror observations of γ < 1 and γ ∣∣ ≳ 1. It is shown that the observed features, including the various perturbations and wavelengths, may indeed be reproduced by the nonlinear simulations. The saturated temperature anisotropy β /β ∣∣ and plasma β ∣∣ show an anticorrelation, which may well be fitted by the modified mirror instability threshold of γ β = β 2 / 2 + γ β with γ ≈ 0.8, γ ∣∣ ≈ 1.3, and the saturated magnetic field of δ B/B ≈ 0.26 ∼ 0.97 increases with increasing values of β ≈ 1.6 ∼ 8.3.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3