Tidal Erasure of Stellar Obliquities Constrains the Timing of Hot Jupiter Formation

Author:

Spalding ChristopherORCID,Winn Joshua N.ORCID

Abstract

Abstract Stars with hot Jupiters sometimes have high obliquities, which are possible relics of hot Jupiter formation. Based on the characteristics of systems with and without high obliquities, it is suspected that obliquities are tidally damped when the star has a thick convective envelope, as is the case for main-sequence stars cooler than ∼6100 K, and the orbit is within ∼8 stellar radii. A promising theory for tidal obliquity damping is the dissipation of inertial waves within the star’s convective envelope. Here, we consider the implications of this theory for the timing of hot Jupiter formation. Specifically, hot stars that currently lack a convective envelope possess one during their pre-main sequence. We find that hot Jupiters orbiting within a critical distance of ∼0.02 au from a misaligned main-sequence star lacking a thick convective envelope must have acquired their tight orbits after a few tens of millions of years in order to have retained their obliquities throughout the pre-main sequence. There are four known systems for which this argument applies–XO-3b, Corot-3b, WASP-14b, and WASP-121b–subject to uncertainties surrounding inertial wave dissipation. Moreover, we conclude that a recently identified overabundance of near-polar hot Jupiters is unlikely sculpted by tides, instead reflecting their primordial configuration. Finally, hot Jupiters arriving around cool stars after a few hundreds of millions of years likely find the host star rotating too slowly for efficient obliquity damping. We predict that the critical effective temperature separating aligned and misaligned stars should vary with metallicity, from 6300 to 6000 K as [Fe/H] varies from −0.3 to +0.3.

Funder

Heising-Simons Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3