First Laboratory Measurement of Magnetic-field-induced Transition Effect in Fe x at Different Magnetic Fields

Author:

Xu GuoqinORCID,Yan Chenglong,Lu QifengORCID,Tang ZhimingORCID,Yang YangORCID,Li Wenxian,Ma Shaokun,Zhao Zihang,Huang Shihan,Song Liudi,Si Ran,Chen Chongyang,Bai XianyongORCID,Tian HuiORCID,Xiao JunORCID,Hutton RogerORCID,Zou Yaming

Abstract

Abstract The magnetic field is extremely important for understanding the properties of the solar corona. However, there are still difficulties in the direct measurement of the coronal magnetic field. The magnetic-field-induced transition (MIT) in Fe x, appearing in coronal spectra, was discovered to have prospective applications in coronal magnetic field measurements. In this work, we obtained the extreme ultraviolet spectra of Fe x in the wavelength range of 174–267 Å in the Shanghai High-temperature Superconducting Electron Beam Ion Trap, and examined the effect of MIT in Fe x by measuring the line ratios between 257.262 Å and the reference line of 226.31 Å (257/226) at different magnetic field strengths for the first time. The electron density that may affect the 257/226 value was also obtained experimentally and verified by comparing the density-sensitive line ratio (175.266 Å/174.534 Å) measurements with the theoretical predictions, and there was good agreement between them. The energy separation between the two levels of 3s23p43d 4 D 5/2 and 3s23p43d 4 D 7/2, one of the most critical parameters for determining the MIT rate, was obtained by analyzing the simulated line ratios of 257/226 with the experimental values at the given electron densities and magnetic fields. Possible reasons that may have led to the difference between the obtained energy splitting and the recommended value in previous works are discussed. Magnetic field response curves for the 257/226 value were calculated and compared to the experimental results, which is necessary for future MIT diagnostics.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of China

Instrument Developing Project of the Chinese Academy of Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3