Exploring Gamma-Ray Burst Diversity: Clustering Analysis of the Emission Characteristics of Fermi- and BATSE-detected Gamma-Ray Bursts

Author:

Mehta NishilORCID,Iyyani ShabnamORCID

Abstract

Abstract Gamma-ray bursts (GRBs), often attributed to massive star collapse or binary compact object mergers, exhibit diverse emission characteristics hinting at multiple GRB classes based on various factors like progenitors, radiation mechanisms, and central engines. This study employs unsupervised clustering using the nested Gaussian mixture model algorithm to analyze data from Fermi and BATSE, identifying four classes (A–D) based on duration, spectral peak, and spectral index of time-integrated spectra of GRBs. Class proportions are approximately 70%, 10%, 3%, and 17%, respectively, with A and B comprising mostly long GRBs, C mainly short GRBs, and D encompassing both types. The classes are further assessed based on spectral index α, indicating distinct radiation mechanisms: α > −0.67 for photospheric emission, α ≤ −1.5 for fast-cooling synchrotron, and −1.5 < α ≤ −0.67 for slow-cooling synchrotron. Classes B and C align with photospheric emission, while A and D predominantly exhibit synchrotron radiation. Short GRBs are predominantly photospheric emission, whereas long GRBs tend to favor synchrotron emission. Overall, 63% of the total bursts exhibit α profiles indicative of synchrotron emission, with the remaining 37% associated with photospheric emission. Considering the limited data of kilonova and supernova associated with GRBs, classes are examined for progenitor origins, suggesting a hybrid nature for A and D, and collapsar and merger origins for B and C, respectively. This clustering analysis results in four GRB classes, which, upon investigation, reveal the diverse and complex nature of GRBs in terms of their radiation, duration, and progenitor.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3