Magnetic Flux in the Sun Emerges Unaffected by Supergranular-scale Surface Flows

Author:

Mani PrasadORCID,Hanson Chris S.ORCID,Dhanpal SiddharthORCID,Hanasoge ShravanORCID,Das Srijan BharatiORCID,Rempel MatthiasORCID

Abstract

Abstract Magnetic flux emergence from the convection zone into the photosphere and beyond is a critical component of the behavior of large-scale solar magnetism. Flux rarely emerges amid field-free areas at the surface, but when it does, the interaction between the magnetism and plasma flows can be reliably explored. Prior ensemble studies have identified weak flows forming near emergence locations, but the low signal-to-noise ratio (S/N) required averaging over the entire data set, erasing information about variation across the sample. Here, we apply deep learning to achieve an improved S/N, enabling a case-by-case study. We find that these associated flows are dissimilar across instances of emergence and also occur frequently in the quiet convective background. Our analysis suggests the diminished influence of supergranular-scale convective flows and magnetic buoyancy on flux rise. Consistent with numerical evidence, we speculate that small-scale surface turbulence and/or deep convective processes play an outsized role in driving flux emergence.

Funder

NYUAD ∣ Research Institute Centers, New York University Abu Dhabi

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3