Calibrating X-Ray Binary Luminosity Functions via Optical Reconnaissance. I. The Case of M83

Author:

Hunt QianaORCID,Gallo Elena,Chandar RupaliORCID,Johns Mulia Paula,Mok AngusORCID,Prestwich Andrea,Liu ShengchenORCID

Abstract

Abstract Building on recent work by Chandar et al., we construct X-ray luminosity functions (XLFs) for different classes of X-ray binary (XRB) donors in the nearby star-forming galaxy M83 through a novel methodology. Rather than classifying low- versus high-mass XRBs based on the scaling of the number of X-ray sources with stellar mass and star formation rate, respectively, we utilize multiband Hubble Space Telescope imaging data to classify each Chandra-detected compact X-ray source as a low-mass (i.e., donor mass ≲3 M ), high-mass (donor mass ≳8M ), or intermediate-mass XRB based on either the location of its candidate counterpart on optical color–magnitude diagrams or the age of its host star cluster. In addition to the standard (single and/or truncated) power-law functional shape, we approximate the resulting XLFs with a Schechter function. We identify a marginally significant (at the 1σ-to-2σ level) exponential downturn for the high-mass XRB XLF, at 38.48 0.33 + 0.52 (in log CGS units). In contrast, the low- and intermediate-mass XRB XLFs, as well as the total XLF of M83, are formally consistent with sampling statistics from a single power law. Our method suggests a non-negligible contribution from low- and possibly intermediate-mass XRBs to the total XRB XLF of M83, i.e., between 20% and 50%, in broad agreement with X-ray-based XLFs. More generally, we caution against considerable contamination from X-ray emitting supernova remnants to the published, X-ray-based XLFs of M83, and possibly all actively star-forming galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of the Connection Between X-ray Binaries and Compact Star Clusters in NGC 4490;Turkish Journal of Astronomy and Astrophysics;2023-12-31

2. On the connection between X-ray Binaries and Compact Star Clusters in NGC 628;Turkish Journal of Astronomy and Astrophysics;2023-12-31

3. The First Stars: Formation, Properties, and Impact;Annual Review of Astronomy and Astrophysics;2023-08-18

4. The X-Ray Binary-star Cluster Connection in Late-type Galaxies;The Astrophysical Journal;2023-08-01

5. Dissecting the Mid-infrared Heart of M83 with JWST;The Astrophysical Journal;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3