Domains of Magnetic Pressure Balance in Parker Solar Probe Observations of the Solar Wind

Author:

Ruffolo DavidORCID,Ngampoopun NawinORCID,Bhora Yash R.ORCID,Thepthong PanisaraORCID,Pongkitiwanichakul PeeraORCID,Matthaeus William H.ORCID,Chhiber RohitORCID

Abstract

Abstract The Parker Solar Probe (PSP) spacecraft is performing the first in situ exploration of the solar wind within 0.2 au of the Sun. Initial observations confirmed the Alfvénic nature of aligned fluctuations of the magnetic field B and velocity V in solar wind plasma close to the Sun, in domains of nearly constant magnetic field magnitude ∣ B ∣, i.e., approximate magnetic pressure balance. Such domains are interrupted by particularly strong fluctuations, including but not limited to radial field (polarity) reversals, known as switchbacks. It has been proposed that nonlinear Kelvin–Helmholtz instabilities form near magnetic boundaries in the nascent solar wind leading to extensive shear-driven dynamics, strong turbulent fluctuations including switchbacks, and mixing layers that involve domains of approximate magnetic pressure balance. In this work we identify and analyze various aspects of such domains using data from the first five PSP solar encounters. The filling fraction of domains, a measure of Alfvénicity, varies from median values of 90% within 0.2 au to 38% outside 0.9 au, with strong fluctuations. We find an inverse association between the mean domain duration and plasma β. We examine whether the mean domain duration is also related to the crossing time of spatial structures frozen into the solar wind flow for extreme cases of the aspect ratio. Our results are inconsistent with long, thin domains aligned along the radial or Parker spiral direction, and compatible with isotropic domains, which is consistent with prior observations of isotropic density fluctuations or flocculae in the solar wind.

Funder

Thailand Science Research and Innovation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3