A Temperature or Far-ultraviolet Tracer? The HNC/HCN Ratio in M83 on the Scale of Giant Molecular Clouds

Author:

Harada NanaseORCID,Saito ToshikiORCID,Nishimura YuriORCID,Watanabe YoshimasaORCID,Sakamoto KazushiORCID

Abstract

Abstract The HNC/HCN ratio is observationally known as a thermometer in Galactic interstellar molecular clouds. A recent study has alternatively suggested that the HNC/HCN ratio is affected by the ultraviolet (UV) field, not by the temperature. We aim to study this ratio on the scale of giant molecular clouds in the barred spiral galaxy M83 towards the southwestern bar end and the central region from Atacama Large Millimeter/submillimeter Array observations, and if possible, distinguish the above scenarios. We compare the high-resolution (40–50 pc) HNC/HCN ratios with the star formation rate from the 3 mm continuum intensity and the molecular mass inferred from the HCN intensities. Our results show that the HNC/HCN ratios do not vary with the star formation rates, star formation efficiencies, or column densities in the bar-end region. In the central region, the HNC/HCN ratios become higher with higher star formation rates, which tend to cause higher temperatures. This result is not consistent with the previously proposed scenario in which the HNC/HCN ratio decreases with increasing temperature. Spectral shapes suggest that this trend may be due to optically thick HCN and optically thin HNC. In addition, we compare the large-scale (∼200 pc) correlation between the dust temperature from the far-IR ratio and the HNC/HCN ratio for the southwestern bar-end region. The HNC/HCN ratio is lower when the dust temperatures are higher. We suggest from the above results that the HNC/HCN ratio depends on the UV radiation field that affects the interstellar medium on the ∼100 pc scale where the column densities are low.

Funder

MEXT ∣ Japan Society for the Promotion of Science

National Science and Technology Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3