A Population of Heavily Reddened, Optically Missed Novae from Palomar Gattini-IR: Constraints on the Galactic Nova Rate

Author:

De KishalayORCID,Kasliwal Mansi M.ORCID,Hankins Matthew J.ORCID,Sokoloski Jennifer L.,Adams Scott M.,Ashley Michael C. B.ORCID,Babul Aliya-Nur,Bagdasaryan Ashot,Delacroix Alexandre,Dekany RichardORCID,Greffe Timothée,Hale David,Jencson Jacob E.ORCID,Karambelkar Viraj R.ORCID,Lau Ryan M.,Mahabal AshishORCID,McKenna Daniel,Moore Anna M.,Ofek Eran O.ORCID,Sharma Manasi,Smith Roger M.,Soon Jamie,Soria RobertoORCID,Srinivasaragavan Gokul,Tinyanont SamapornORCID,Travouillon Tony,Tzanidakis AnastasiosORCID,Yao YuhanORCID

Abstract

Abstract The nova rate in the Milky Way remains largely uncertain, despite its vital importance in constraining models of Galactic chemical evolution as well as understanding progenitor channels for Type Ia supernovae. The rate has been previously estimated to be in the range of ≈10–300 yr−1, either based on extrapolations from a handful of very bright optical novae or the nova rates in nearby galaxies; both methods are subject to debatable assumptions. The total discovery rate of optical novae remains much smaller (≈5–10 yr−1) than these estimates, even with the advent of all-sky optical time-domain surveys. Here, we present a systematic sample of 12 spectroscopically confirmed Galactic novae detected in the first 17 months of Palomar Gattini-IR (PGIR), a wide-field near-infrared time-domain survey. Operating in the J band (≈1.2 μm), which is significantly less affected by dust extinction compared to optical bands, the extinction distribution of the PGIR sample is highly skewed to a large extinction values (>50% of events obscured by A V ≳ 5 mag). Using recent estimates for the distribution of Galactic mass and dust, we show that the extinction distribution of the PGIR sample is commensurate with dust models. The PGIR extinction distribution is inconsistent with that reported in previous optical searches (null-hypothesis probability <0.01%), suggesting that a large population of highly obscured novae have been systematically missed in previous optical searches. We perform the first quantitative simulation of a 3π time-domain survey to estimate the Galactic nova rate using PGIR, and derive a rate of 43.7 8.7 + 19.5 yr−1. Our results suggest that all-sky near-infrared time-domain surveys are well poised to uncover the Galactic nova population.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3