Abstract
Abstract
We construct a one-dimensional protoplanetary disk model to investigate long-term disk evolution from molecular cloud core collapse. To obtain details of disk evolution, instead of solving the traditional diffusion equation for disk surface density, we suggest a set of equations derived from the basic principles of fluid mechanics. Effects of infalling material, magnetorotational instability, and disk self-gravity are taken into account. According to the role of disk self-gravity, we find that disks can be classified into three types. For a type I disk, disk self-gravity is not important. For a type II disk, disk self-gravity has effects on both disk scale height and gas radial motion. In addition, gravitational instability can cause the transport of angular momentum. For a type III disk, disk self-gravity plays a dominant role in disk evolution. In this paper, we focus on the first two types and the investigation of the third one is presented in a companion paper. For each disk, we find that there are three phases during evolution. Phase 1 is the very early phase during which the radial velocity is on the order of 106 cm s−1 and the transport of angular momentum caused by viscosity is not important. Phase 2 begins when a rotationally supported disk is formed. From this phase, viscosity plays a role in the transport of angular momentum. When the infall ends, phase 3 begins. Since angular velocity is calculated directly, we can reveal the non-Keplerian effect, which has important effects on the radial drift of solids and planetesimal formation.
Funder
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献