A Twin-jet Structure Rather than Jet Rotation in the Young Stellar Object OMC 2/FIR 6b

Author:

Soker NoamORCID,Bublitz Jesse,Kastner Joel H.

Abstract

Abstract We analyze recent high-quality Atacama Large Millimeter Array (ALMA) molecular line mapping observations of the northeast jet of the young stellar object (YSO) OMC 2/FIR 6b (HOPS-60) and find that these ALMA observations are much more likely to indicate a twin-jet structure than jet rotation, as previously hypothesized. The interpretation of the line-of-sight velocity gradient across (perpendicular to its axis) the northeast jet of Fir 6b in terms of jet rotation leads to jet-launching radii of ≃2–3 au. However, the velocities of the jets ≃100–400 km s−1 are much larger than the escape speed from these radii. We argue that the northeast jet of FIR 6b is instead compatible with a twin-jet structure, as observed in some planetary nebulae. Specifically, we find that the main, redshifted jet emanating from the central YSO is composed of two, very closely aligned, narrower jets that were launched by the central YSO at about the same time but at different inclinations with respect to the plain of the sky. This twin-jet structure removes the extreme requirement that jets with velocities similar to the escape velocity from the YSO be launched from very large radii. The YSO FIR 6b and certain planetary nebulae also share the characteristics of unequal structures and intensities of their two opposing bipolar jets. We propose that such opposing lobe asymmetries can result from a substellar binary companion on an eccentric orbit that is inclined to the accretion disk plane.

Funder

Israel Science Foundation

PAZY Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of the X-ray Binary System Sco X-1;Astronomy Reports;2023-11

2. EVOLUTION OF THE X-RAY BINARY SYSTEM Sco X-1;Астрономический журнал;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3