Modeling the Chromosphere and Transition Region of Planet-hosting Star GJ 436

Author:

Hintz DominikORCID,Peacock SarahORCID,Barman TravisORCID,Fuhrmeister Birgit,Nagel EvangelosORCID,Schweitzer AndreasORCID,Jeffers Sandra V.,Ribas IgnasiORCID,Reiners AnsgarORCID,Quirrenbach Andreas,Amado Pedro J.ORCID,Béjar Victor J. S.ORCID,Caballero José A.ORCID,Hatzes Artie P.,Montes DavidORCID

Abstract

Abstract Ahead of upcoming space missions intending to conduct observations of low-mass stars in the ultraviolet (UV) spectral region it becomes imperative to simultaneously conduct atmospheric modeling from the UV to the visible (VIS) and near-infrared (NIR). Investigations on extended spectral regions will help to improve the overall understanding of the diversity of spectral lines arising from very different atmospheric temperature regions. Here we investigate atmosphere models with a chromosphere and transition region for the M2.5V star GJ 436, which hosts a close-in Hot Neptune. The atmosphere models are guided by observed spectral features from the UV to the VIS/NIR originating in the chromosphere and transition region of GJ 436. High-resolution observations from the Hubble Space Telescope and Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs (CARMENES) are used to obtain an appropriate model spectrum for the investigated M dwarf. We use a large set of atomic species considered in nonlocal thermodynamic equilibrium conditions within our PHOENIX model computations to approximate the physics within the low-density atmospheric regions. In order to obtain an overall match for the nonsimultaneous observations, it is necessary to apply a linear combination of two model spectra, where one of them better reproduces the UV lines while the other better represents the lines from the VIS/NIR range. This is needed to adequately handle different activity states across the observations.

Funder

NASA

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3