Where are the Water Worlds?: Self-consistent Models of Water-rich Exoplanet Atmospheres

Author:

Kempton Eliza M.-R.ORCID,Lessard MadelineORCID,Malik MatejORCID,Rogers Leslie A.ORCID,Futrowsky Kate E.ORCID,Ih JegugORCID,Marounina NadejdaORCID,Muñoz-Romero Carlos E.ORCID

Abstract

Abstract It remains to be ascertained whether sub-Neptune exoplanets primarily possess hydrogen-rich atmospheres or whether a population of H2O-rich water worlds lurks in their midst. Addressing this question requires improved modeling of water-rich exoplanetary atmospheres, both to predict and interpret spectroscopic observations and to serve as upper boundary conditions on interior structure calculations. Here, we present new models of hydrogen-helium-water atmospheres with water abundances ranging from solar to 100% water vapor. We improve upon previous models of high-water-content atmospheres by incorporating updated prescriptions for water self-broadening and a nonideal gas equation of state. Our model grid (https://umd.box.com/v/water-worlds) includes temperature–pressure profiles in radiative-convective equilibrium, along with their associated transmission and thermal emission spectra. We find that our model updates primarily act at high pressures, significantly impacting bottom-of-atmosphere temperatures, with implications for the accuracy of interior structure calculations. Upper-atmosphere conditions and spectroscopic observables are less impacted by our model updates, and we find that, under most conditions, retrieval codes built for hot Jupiters should also perform well on water-rich planets. We additionally quantify the observational degeneracies among both thermal emission and transmission spectra. We recover standard degeneracies with clouds and mean molecular weight for transmission spectra, and we find thermal emission spectra to be more readily distinguishable from one another in the water-poor (i.e., near-solar) regime.

Funder

National Science Foundation

NASA ∣ SMD ∣ Astrophysics Division

Research Corporation for Science Advancement

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3