Premerger Sky Localization of Gravitational Waves from Binary Neutron Star Mergers Using Deep Learning

Author:

Chatterjee ChayanORCID,Wen LinqingORCID

Abstract

Abstract The simultaneous observation of gravitational waves (GW) and prompt electromagnetic counterparts from the merger of two neutron stars can help reveal the properties of extreme matter and gravity during and immediately after the final plunge. Rapid sky localization of these sources is crucial to facilitate such multimessenger observations. As GWs from binary neutron star (BNS) mergers can spend up to 10–15 minutes in the frequency bands of the detectors at design sensitivity, early-warning alerts and premerger sky localization can be achieved for sufficiently bright sources, as demonstrated in recent studies. In this work, we present premerger BNS sky localization results using GW-SkyLocator, a deep-learning model capable of inferring sky location posterior distributions of GW sources at orders of magnitude faster speeds than standard Markov Chain Monte Carlo methods. We test our model’s performance on a catalog of simulated injections from Sachdev, recovered at 0–60 s before the merger, and obtain comparable sky localization areas to the rapid localization tool BAYESTAR. These results show the feasibility of our model for premerger sky localization and the possibility of follow-up observations for precursor emissions from BNS mergers.

Funder

OzGrav - Australian Research Council Centre of Excellence for Gravitational Wave Discovery

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3