Pore Accessibility in Amorphous Solid Water

Author:

Carmack Rebecca A.ORCID,Tribbett Patrick D.ORCID,Loeffler Mark J.ORCID

Abstract

Abstract The porous nature of amorphous solid water (ASW) can significantly effect the chemical evolution of any planetary or astrophysical surface it forms on due to its ability to trap and retain volatiles. The amount of volatiles that can enter an ASW grain or mantle is limited by how interconnected the pores are to each other and to the exterior surface. Previous laboratory studies examined the interconnectivity of ASW pores in thin ASW films relevant to ice mantles on interstellar grains. Here, we investigate to what extent the interconnectivity of pores and subsequent gas absorption properties of ASW change as one moves toward thicker samples (up to ∼1019 H2O cm−2 or ∼4 μm) more representative of icy material found in the outer solar system. We find that for all film thicknesses studied, the internal pores are accessible from the sample’s surface, and the amount of gas needed to fill the pores increases linearly with the ASW column density. This linear relation supports that the interconnectivity to the surface will persist in ices that are much thicker than those we were able to study, suggesting that the amount of contaminant gas trapped within ASW can significantly alter the chemical evolution of a variety of ASW-rich surfaces in the outer solar system.

Funder

NASA Astrophysics Research and Analysis

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3