The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere

Author:

Cleeves L. IlsedoreORCID,Loomis Ryan A.ORCID,Teague RichardORCID,Bergin Edwin A.ORCID,Wilner David J.ORCID,Bergner Jennifer B.ORCID,Blake Geoffrey A.ORCID,Calahan Jenny K.ORCID,Cazzoletti PaoloORCID,van Dishoeck Ewine F.ORCID,Guzmán Viviana V.ORCID,Hogerheijde Michiel R.ORCID,Huang JaneORCID,Kama MihkelORCID,Öberg Karin I.ORCID,Qi ChunhuaORCID,van Scheltinga Jeroen TerwisschaORCID,Walsh CatherineORCID

Abstract

Abstract Connecting the composition of planet-forming disks with that of gas giant exoplanet atmospheres, in particular through C/O ratios, is one of the key goals of disk chemistry. Small hydrocarbons like C2H and C3H2 have been identified as tracers of C/O, as they form abundantly under high C/O conditions. We present resolved c–C3H2 observations from the TW Hya Rosetta Stone Project, a program designed to map the chemistry of common molecules at 15–20 au resolution in the TW Hya disk. Augmented by archival data, these observations comprise the most extensive multi-line set for disks of both ortho and para spin isomers spanning a wide range of energies, E u = 29–97 K. We find the ortho-to-para ratio of c–C3H2 is consistent with 3 throughout extent of the emission, and the total abundance of both c–C3H2 isomers is (7.5–10) × 10−11 per H atom, or 1%–10% of the previously published C2H abundance in the same source. We find c–C3H2 comes from a layer near the surface that extends no deeper than z/r = 0.25. Our observations are consistent with substantial radial variation in gas-phase C/O in TW Hya, with a sharp increase outside ∼30 au. Even if we are not directly tracing the midplane, if planets accrete from the surface via, e.g., meridional flows, then such a change should be imprinted on forming planets. Perhaps interestingly, the HR 8799 planetary system also shows an increasing gradient in its giant planets’ atmospheric C/O ratios. While these stars are quite different, hydrocarbon rings in disks are common, and therefore our results are consistent with the young planets of HR 8799 still bearing the imprint of their parent disk’s volatile chemistry.

Funder

David and Lucile Packard Foundation

Virginia Space Grant Consortium

Dutch Astrochemistry II program of the Netherlands Organization for Scientific Research

Science and Technology Facilities Council

National Science Foundation Graduate Research Fellowship

National Aeronautics and Space Administration FINESST

FONDECYT Iniciación

NASA Hubble Fellowship grant

Tartu ASTRA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3