Resolved Velocity Profiles of Galactic Winds at Cosmic Noon

Author:

Vasan G. C. KeerthiORCID,Jones TuckerORCID,Sanders Ryan L.ORCID,Ellis Richard S.ORCID,Stark Daniel P.,Kacprzak Glenn G.ORCID,Barone Tania M.ORCID,Tran Kim-Vy H.ORCID,Glazebrook KarlORCID,Jacobs ColinORCID

Abstract

Abstract We study the kinematics of the interstellar medium (ISM) viewed “down the barrel” in 20 gravitationally lensed galaxies during cosmic noon (z = 1.5–3.5). We use moderate-resolution spectra (R ∼ 4000) from Keck’s Echellette Spectrograph and Imager and Magellan/MagE to spectrally resolve the ISM absorption in these galaxies into ∼10 independent elements and use double Gaussian fits to quantify the velocity structure of the gas. We find that the bulk motion of gas in this galaxy sample is outflowing, with average velocity centroid v cent = 141 km s−1 (±111 km s−1 scatter) measured with respect to the systemic redshift. A total of 16 out of the 20 galaxies exhibit a clear positive skewness, with a blueshifted tail extending to ∼ −500 km s−1. We examine scaling relations in outflow velocities with galaxy stellar mass and star formation rate, finding correlations consistent with a momentum-driven wind scenario. Our measured outflow velocities are also comparable to those reported for FIRE-2 and TNG50 cosmological simulations at similar redshift and galaxy properties. We also consider implications for interpreting results from lower-resolution spectra. We demonstrate that while velocity centroids are accurately recovered, the skewness, velocity width, and probes of high-velocity gas (e.g., v 95) are subject to large scatter and biases at lower resolution. We find that R ≳ 1700 is required for accurate results for the gas kinematics of our sample. This work represents the largest available sample of well-resolved outflow velocity structure at z > 2 and highlights the need for good spectral resolution to recover accurate properties.

Funder

Gordon and Betty Moore Foundation

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3