Abstract
Abstract
We study the kinematics of the interstellar medium (ISM) viewed “down the barrel” in 20 gravitationally lensed galaxies during cosmic noon (z = 1.5–3.5). We use moderate-resolution spectra (R ∼ 4000) from Keck’s Echellette Spectrograph and Imager and Magellan/MagE to spectrally resolve the ISM absorption in these galaxies into ∼10 independent elements and use double Gaussian fits to quantify the velocity structure of the gas. We find that the bulk motion of gas in this galaxy sample is outflowing, with average velocity centroid
v
cent
=
−
141
km s−1 (±111 km s−1 scatter) measured with respect to the systemic redshift. A total of 16 out of the 20 galaxies exhibit a clear positive skewness, with a blueshifted tail extending to ∼ −500 km s−1. We examine scaling relations in outflow velocities with galaxy stellar mass and star formation rate, finding correlations consistent with a momentum-driven wind scenario. Our measured outflow velocities are also comparable to those reported for FIRE-2 and TNG50 cosmological simulations at similar redshift and galaxy properties. We also consider implications for interpreting results from lower-resolution spectra. We demonstrate that while velocity centroids are accurately recovered, the skewness, velocity width, and probes of high-velocity gas (e.g., v
95) are subject to large scatter and biases at lower resolution. We find that R ≳ 1700 is required for accurate results for the gas kinematics of our sample. This work represents the largest available sample of well-resolved outflow velocity structure at z > 2 and highlights the need for good spectral resolution to recover accurate properties.
Funder
Gordon and Betty Moore Foundation
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献