Abstract
Abstract
The color–magnitude diagrams (CMDs) of intermediate-age star clusters (≲2 Gyr) are much more complex than those predicted by coeval, nonrotating stellar evolution models. Their observed extended main-sequence turnoffs (eMSTOs) could result from variations in stellar age, stellar rotation, or both. The physical interpretation of eMSTOs is largely based on the complex mapping between stellar models—themselves functions of mass, rotation, orientation, and binarity—and the CMD. In this paper, we compute continuous probability densities in three-dimensional color, magnitude, and
v
e
sin
i
space for individual stars in a cluster’s eMSTO, based on a rotating stellar evolution model. These densities enable the rigorous inference of cluster properties from a stellar model, or, alternatively, constraints on the stellar model from the cluster’s CMD. We use the MIST stellar evolution models to jointly infer the age dispersion, the rotational distribution, and the binary fraction of the Large Magellanic Cloud cluster NGC 1846. We derive an age dispersion of ∼70–80 Myr, approximately half the earlier estimates due to nonrotating models. This finding agrees with the conjecture that rotational variation is largely responsible for eMSTOs. However, MIST models do not provide a satisfactory fit to all stars in the cluster and achieve their best agreement at an unrealistically high binary fraction. The lack of agreement near the main-sequence turnoff suggests specific physical changes to the stellar evolution models, including a lower mass for the Kraft break and potentially enhanced main-sequence lifespans for rapidly rotating stars.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献