H i HOD. I. The Halo Occupation Distribution of H i Galaxies

Author:

Qin FeiORCID,Howlett CullanORCID,Stevens Adam R. H.ORCID,Parkinson DavidORCID

Abstract

Abstract The next generation of galaxy surveys will provide more precise measurements of galaxy clustering than have previously been possible. The 21 cm radio signals that are emitted from neutral atomic hydrogen (H i) gas will be detected by large-area radio surveys such as the Widefield Australian Square Kilometre Array (SKA) Pathfinder L-band Legacy All-sky Blind Survey and SKA, and deliver galaxy positions and velocities that can be used to measure galaxy clustering statistics. However, to harness this information to improve our cosmological understanding and learn about the physics of dark matter and dark energy, we need to accurately model the manner in which galaxies detected in H i trace the underlying matter distribution of the universe. For this purpose, we develop a new H i-based halo occupation distribution (HOD) model, which makes predictions for the number of galaxies present in dark matter halos conditional on their H i mass. The parameterized HOD model is fit and validated using the Dark Sage semi-analytic model, where we show that the HOD parameters can be modeled by simple linear and quadratic functions of the H i mass. However, we also find that the clustering predicted by the HOD depends sensitively on the radial distributions of the H i galaxies within their host dark matter halos, which does not follow the Navarro–Frenk–White profile in the Dark Sage simulation. As such, this work enables—for the first time—a simple prescription for placing galaxies of different H i masses within dark matter halos in a way that is able to reproduce the H i mass-dependent galaxy clustering and H i mass function simultaneously and without requiring knowledge of the optical properties of the galaxies. Further efforts are required to demonstrate that this model can be used to produce large ensembles of mock galaxy catalogs for upcoming surveys.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3