Kilonova and Optical Afterglow from Binary Neutron Star Mergers. I. Luminosity Function and Color Evolution

Author:

Zhu Jin-PingORCID,Yang Yuan-PeiORCID,Zhang BingORCID,Gao HeORCID,Yu Yun-WeiORCID

Abstract

Abstract In the first work of this series, we adopt a GW170817-like viewing-angle-dependent kilonova model and the standard afterglow model with a light-curve distribution based on the properties of cosmological short gamma-ray burst afterglows to simulate the luminosity functions and color evolution of both kilonovae and optical afterglow emissions from binary neutron star (BNS) mergers. We find that ∼10% of the nearly-on-axis afterglows are brighter than the associated kilonovae at the peak time. These kilonovae would be significantly polluted by the associated afterglow emission. Only at large viewing angles with sin θ v 0.20 , the electromagnetic signals of most BNS mergers would be kilonova-dominated and some off-axis afterglows may emerge at ∼5–10 days after the mergers. At a brightness dimmer than ∼23–24 mag, according to their luminosity functions, the number of afterglows is much larger than that of kilonovae. Because the search depth of the present survey projects is <22 mag, the number of afterglow events that are detected via serendipitous observations would be much higher than that of kilonova events, consistent with the current observations. For the foreseeable survey projects (e.g., Mephisto, WFST, and LSST), whose search depths can reach ≳23–24 mag, the detection rate of kilonovae could have the same order of magnitude as afterglows. We also find that it may be difficult to use the fading rate in a single band to directly identify kilonovae and afterglows among various fast-evolving transients by serendipitous surveys. However, the color evolution between the optical and infrared bands can identify them because the color evolution patterns of these phenomena are unique compared with those of other fast-evolving transients.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3