Systematic Investigation of Very-early-phase Spectra of Type Ia Supernovae

Author:

Ogawa MaoORCID,Maeda KeiichiORCID,Kawabata MihoORCID

Abstract

Abstract It has been widely accepted that Type Ia supernovae (SNe Ia) are thermonuclear explosions of a CO white dwarf. However, the natures of the progenitor system(s) and explosion mechanism(s) are still unclarified. Thanks to the recent development of transient observations, they are now frequently discovered shortly after the explosion, followed by rapid spectroscopic observations. In this study, by modeling very-early-phase spectra of SNe Ia, we try to constrain the explosion models of SNe Ia. By using the Monte Carlo radiation transfer code, TARDIS, we estimate the properties of their outermost ejecta. We find that the photospheric velocity of normal-velocity supernovae (NV SNe) in the first week is ∼15,000 km s−1. The outer velocity, to which the carbon burning extends, spans the range between ∼20,000 and 25,000 km s−1. The ejecta density of NV SNe also shows a large diversity. For high-velocity supernovae (HV SNe) and 1999aa-like SNe, the photospheric velocity is higher, ∼20,000 km s−1. They have different photospheric densities, with HV SNe having higher densities than 1999aa-like SNe. For all these types, we show that the outermost composition is closely related to the outermost ejecta density; the carbon-burning layer and the unburnt carbon layer are found in the higher-density and lower-density objects, respectively. This finding suggests that there might be two sequences, the high-density and carbon-poor group (HV SNe and some NV SNe) and the low-density and carbon-rich group (1999aa-like and other NV SNe), which may be associated with different progenitor channels.

Funder

Keiichi Maeda

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3