Direct Tests of General Relativity under Screening Effect with Galaxy-scale Strong Lensing Systems

Author:

Lian Yujie,Cao ShuoORCID,Liu Tonghua,Biesiada MarekORCID,Zhu Zong-HongORCID

Abstract

Abstract Observations of galaxy-scale strong gravitational lensing (SGL) systems have enabled unique tests of nonlinear departures from general relativity (GR) on the galactic and supergalactic scales. One of the most important cases of such tests are constraints on the gravitational slip between two scalar gravitational potentials. In this paper, we use a newly compiled sample of strong gravitational lenses to test the validity of GR, focusing on the screening effects on the apparent positions of lensed sources relative to the GR predictions. This is the first simultaneous measurement of the post-Newtonian parameter (γ PN) and the screening radius (Λ) without any assumptions about the contents of the universe. Our results suggest that the measured parameterized post-Newtonian is marginally consistent with GR (γ PN = 1) with increasing screening radius (Λ = 10–300 kpc), although the choice of lens models may have a significant influence on the final measurements. Based on a well-defined sample of 5000 simulated strong lenses from the forthcoming LSST, our methodology will provide a strong extragalactic test of GR with an accuracy of 0.5%, assessed up to scales of Λ ∼ 300 kpc. For the current and future observations of available SGL systems, there is no noticeable evidence indicating some specific cutoff scale on kiloparsec-megaparsec scales, beyond which new gravitational degrees of freedom are expressed.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3