Emission Line Intensity Ratios of Fe xxvi/ xxv/ xxiv in Solar Flares Observed by Hinotori

Author:

Watanabe TetsuyaORCID

Abstract

Abstract High-resolution spectra observed by the Solar X-ray spectrometer on board the Hinotori mission are revisited. Flat crystals slightly offset to the satellite spin axis produce automatic spectral scans for emission lines emerging from highly charged iron ions in solar flares every half-spin time period. All the downlinked data of the mission are converted to FITS format and major flare spectral data are revived as IDL save files in ISAS/DARTS. Based on these data sets, single-temperature fits are performed for the emission line complex of highly charged iron ions in the wavelength range of 1.75–1.95 Å and compared with theoretical predictions. Synthetic spectra with single electron temperatures estimated from j/w line-intensity ratios fit fairly well for Fe xxiv and Fe xxiii lines in the wavelength range of 1.85–1.88 Å, while intensity ratios of Fe xxv lines (x, y, z) and the inner-shell excitation line of Fe xxiv (q) to the Fe xxv resonance line (w) have systematic excesses. Empirical relations for the observed line ratios are derived. Ion fractions of Fe+25/Fe+24 estimated by intensity ratios of Lyα/w in the temperature range of log T e =7.25–7.45 are consistent with values in ionization equilibrium, and the remaining excesses of the Fe xxv line ratios may suggest problems with the atomic parameters or atomic modeling.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3