Modest Dust Settling in the IRAS04302+2247 Class I Protoplanetary Disk

Author:

Villenave M.ORCID,Podio L.ORCID,Duchêne G.ORCID,Stapelfeldt K. R.ORCID,Melis C.ORCID,Carrasco-Gonzalez C.ORCID,Le Gouellec V. J. M.ORCID,Ménard F.ORCID,de Simone M.ORCID,Chandler C.ORCID,Garufi A.ORCID,Pinte C.ORCID,Bianchi E.ORCID,Codella C.ORCID

Abstract

Abstract We present new Very Large Array observations, between 6.8 and 66 mm, of the edge-on Class I disk IRAS04302+2247. Observations at 6.8 mm and 9.2 mm lead to the detection of thermal emission from the disk, while shallow observations at the other wavelengths are used to correct for emission from other processes. The disk radial brightness profile transitions from broadly extended in previous Atacama Large Millimeter/submillimeter Array 0.9 mm and 2.1 mm observations to much more centrally brightened at 6.8 mm and 9.2 mm, which can be explained by optical depth effects. The radiative transfer modeling of the 0.9 mm, 2.1 mm, and 9.2 mm data suggests that the grains are smaller than 1 cm in the outer regions of the disk, allowing us to obtain the first lower limit for the scale height of grains emitting at millimeter wavelengths in a protoplanetary disk. We find that the millimeter dust scale height is between 1 au and 6 au at a radius 100 au from the central star, while the gas scale height is estimated to be about 7 au, indicating a modest level of settling. The estimated dust height is intermediate between less evolved Class 0 sources, which are found to be vertically thick, and more evolved Class II sources, which show a significant level of settling. This suggests that we are witnessing an intermediate stage of dust settling.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Observational View of Structure in Protostellar Systems;Annual Review of Astronomy and Astrophysics;2024-09-13

2. Streaming Instability and Turbulence: Conditions for Planetesimal Formation;The Astrophysical Journal;2024-07-01

3. Evidence for non-zero turbulence in the protoplanetary disc around IM Lup;Monthly Notices of the Royal Astronomical Society;2024-06-20

4. A self-consistent model for dust settling and the vertical shear instability in protoplanetary disks;Publications of the Astronomical Society of Japan;2024-05-25

5. Length and Velocity Scales in Protoplanetary Disk Turbulence;The Astrophysical Journal;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3