Gas Dynamical Friction on Accreting Objects

Author:

Suzuguchi TomoyaORCID,Sugimura KazuyukiORCID,Hosokawa TakashiORCID,Matsumoto TomoakiORCID

Abstract

Abstract The drag force experienced by astronomical objects moving through gaseous media (gas dynamical friction) plays a crucial role in their orbital evolution. Ostriker derived a formula for gas dynamical friction by linear analysis, and its validity has been confirmed through subsequent numerical simulations. However, the effect of gas accretion onto the objects on the dynamical friction is yet to be understood. In this study, we investigate the Mach number dependence of dynamical friction considering gas accretion through three-dimensional nested-grid simulations. We find that the net frictional force, determined by the sum of the gravitational force exerted by surrounding gas and momentum flux transferred by accreting gas, is independent of the resolution of simulations. Only the gas outside the Bondi–Hoyle–Lyttleton radius contributes to dynamical friction, because the gas inside this radius is eventually absorbed by the central object and returns the momentum obtained through the gravitational interaction with it. In the subsonic case, the front–back asymmetry induced by gas accretion leads to larger dynamical friction than predicted by the linear theory. Conversely, in the slightly supersonic case with a Mach number between 1 and 1.5, the nonlinear effect leads to a modification of the density distribution in a way that reduces the dynamical friction, compared with the linear theory. At a higher Mach number, the modification becomes insignificant and the dynamical friction can be estimated with the linear theory. We also provide a fitting formula for dynamical friction based on our simulations, which can be used in a variety of applications.

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3