An Argument in Favor of Magnetic Polarity Reversals Due to Heat Flux Variations in Fully Convective Stars and Planets

Author:

Nigro GiuseppinaORCID

Abstract

Abstract Low-mass M dwarf stars, T Tauri stars, as well as planets such as the Earth and Jupiter are permeated by large-scale magnetic fields generated by the convection-driven dynamo operating in their convection zones. These magnetic fields are often characterized by a significant time variability, most prominently expressed by the inversions of their polarity, denoted as reversals, whose mechanism has not been completely understood. This work aims to gain some insights into the mechanism that generates these reversals. With this purpose, a simplified nonlinear model is developed to investigate the role played in polarity reversals by the convective heat transfer occurring in stellar and planetary convection zones. A model result is the enhancement of the global heat transport before polarity reversals, showing the crucial role that heat transport might play in their occurrence. This role is elucidated by considering that a reversal has a greater than 70% probability of occurring during a burst of convective heat transport. This high probability has been found in 94 out of 101 numerical simulations obtained by changing characteristic model parameters. Moreover, the causal relationship between the convective heat flux growth and the magnetic field variations is highlighted by the temporal antecedence of the former relative to the latter and by convergent cross mapping, namely a statistical test for detecting causality. It would thus be expected that higher levels of temporal variability in the planetary and stellar magnetic fields may be correlated to a higher heat transfer efficiency achieved in the interior of these celestial bodies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3