A Novel Solution for Resonant Scattering Using Self-consistent Boundary Conditions

Author:

McClellan B. ConnorORCID,Davis Shane W.ORCID,Arras PhilORCID

Abstract

Abstract We present two novel additions to the semianalytic solution of Lyα radiative transfer in spherical geometry: (1) implementation of the correct boundary condition for a steady source, and (2) solution of the time-dependent problem for an impulsive source. For the steady-state problem, the solution can be represented as a sum of two terms: a previously known analytic solution of the equation with mean intensity J = 0 at the surface, and a novel, semianalytic solution which enforces the correct boundary condition of zero-ingoing intensity at the surface. This solution is compared to that of the Monte Carlo method, which is valid at arbitrary optical depth. It is shown that the size of the correction is of order unity when the spectral peaks approach the Doppler core and decreases slowly with line center optical depth, specifically as ( a τ 0 ) 1 / 3 , which may explain discrepancies seen in previous studies. For the impulsive problem, the time, spatial, and frequency dependence of the solution are expressed using an eigenfunction expansion in order to characterize the escape time distribution and emergent spectra of photons. It is shown that the lowest-order eigenfrequency agrees well with the decay rate found in the Monte Carlo escape time distribution at sufficiently large line center optical depths. The characterization of the escape time distribution highlights the potential for a Monte Carlo acceleration method, which would sample photon escape properties from distributions rather than calculating every photon scattering, thereby reducing computational demand.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theory and Observation of Winds from Star-Forming Galaxies;Annual Review of Astronomy and Astrophysics;2024-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3