Abstract
Abstract
We present the results of an extensive γ-ray data analysis of the emission from the blazar S5 0716+714 with the primary motivation to study its temporal and spectral variability behavior. In this work, we extract a 10 days binned γ-ray light curve from 2008 August 4 to 2016 April 27 in the energy range of 0.1–300 GeV and identify six outburst periods with peak flux of >4 × 10−7 ph cm−2 s−1 from this highly variable source. The brightest flares are identified by zooming in these outburst periods to 1 day binning and using the Bayesian Blocks algorithm. The fastest variability timescale is found to be 1.5 ± 0.3 hr at MJD 57128.01 ± 0.01 with a peak flux above 100 MeV of (26.8 ± 6.9) × 10−7 ph cm−2 s−1. No hint of periodic modulations has been detected for the light curve of S5 0716+714. During the outburst phases, the γ-ray spectrum shows an obvious spectral break with a break energy between 0.93 and 6.90 GeV energies, which may be caused by an intrinsic break in the energy distribution of radiating particles. The five highest-energy photons, with E > 100 GeV, imply that the high-energy emission from this source may originate from a moving emission region in a helical path upstream in the jet. The spectral behavior and temporal characteristics of the individual flares indicate that the location of the emission region lies in the sub-parsec scale (r
γ
< 0.85 pc).
Funder
National key research and development program
National Science Foundation of China
The Science Foundation of Yunnan Province
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献