No Self-shadowing Instability in 2D Radiation Hydrodynamical Models of Irradiated Protoplanetary Disks

Author:

David Melon Fuksman JulioORCID,Klahr HubertORCID

Abstract

Abstract Theoretical models of protoplanetary disks including stellar irradiation often show a spontaneous amplification of scale height perturbations, produced by the enhanced absorption of starlight in enlarged regions. In turn, such regions cast shadows on adjacent zones that consequently cool down and shrink, eventually leading to an alternating pattern of overheated and shadowed regions. Previous investigations have proposed this to be a real self-sustained process, the so-called self-shadowing or thermal wave instability, which could naturally form frequently observed disk structures such as rings and gaps, and even potentially enhance the formation of planetesimals. All of these, however, have assumed in one way or another vertical hydrostatic equilibrium and instantaneous radiative diffusion throughout the disk. In this work we present the first study of the stability of accretion disks to self-shadowing that relaxes these assumptions, relying instead on radiation hydrodynamical simulations. We first construct hydrostatic disk configurations by means of an iterative procedure and show that the formation of a pattern of enlarged and shadowed regions is a direct consequence of assuming instantaneous radiative diffusion. We then let these solutions evolve in time, which leads to a fast damping of the initial shadowing features in layers close to the disk surface. These thermally relaxed layers grow toward the midplane until all temperature extrema in the radial direction are erased in the entire disk. Our results suggest that radiative cooling and gas advection at the disk surface prevent a self-shadowing instability from forming, by damping temperature perturbations before these reach lower, optically thick regions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3