Frequency Evolution Behavior of Pulse Profile of PSR B1737+13 with the Inverse Compton Scattering Model

Author:

Zhi Q. J.ORCID,Xu X.,Shang L. H.ORCID,Qiao G. J.,Bai J. T.,Dang S. J.,Zhao R. S.,Dong A. J.ORCID,Zhang D. D.,Lin Q. W.,Yang H.

Abstract

Abstract The radio radiation mechanism is one of the open questions in pulsar physics. Multiband observations are very important for constraining the pulsar radiation mechanism. In this paper, we investigate the pulse profiles of PSR B1737+13 and its evolution with the frequency. The integrated pulse profiles are obtained from the European Pulsar Network and the Australia Telescope National Facility data, together with recent observations from the largest dish Five-hundred-meter Aperture Spherical radio Telescope. The radiation components are separated with the squared hyperbolic secant functions, and the radiation altitudes of each radiation component at different frequencies are calculated. It is found that the radio radiation at different frequencies comes from different altitudes. The frequency evolutions of separations for the inner and outer cone components are studied. It is found that the separations of the inner and outer cone components have opposite frequency dependence. We simulate the RFM of PSR B1737+13 with the inverse Compton scattering (ICS) model and find that the RFM can be naturally described by the ICS model. Through the simulation, the radio radiation region of PSR B1737+13 is determined, and the result shows that the radio radiation of this pulsar may be generated in the annular gap region.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the multidrifting behaviour of subpulses in PSR J2007 + 0910 with the FAST;Monthly Notices of the Royal Astronomical Society;2023-11-06

2. The drifting subpulse and nulling of PSR B0820 + 02 observed with FAST;Monthly Notices of the Royal Astronomical Society;2023-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3