Abstract
Abstract
Current models of galaxy formation require strong feedback from active galactic nuclei (AGN) to explain the observed lack of star formation in massive galaxies since z ≈ 2, but direct evidence of this energy input is limited. We use the SIMBA cosmological galaxy formation simulations to assess the ability of thermal Sunyaev–Zel’dovich (tSZ) measurements to provide such evidence, by mapping the pressure structure of the circumgalactic medium around massive z ≈ 0.2–1.5 galaxies. We undertake a stacking approach to calculate the total tSZ signal and its radial profile in simulations with varying assumptions of AGN feedback, and we assess its observability with current and future telescopes. By convolving our predictions with the 2.′1 beam of the Atacama Cosmology Telescope, we show that current observations at z ≈ 1 are consistent with SIMBA’s fiducial treatment of AGN feedback and inconsistent with SIMBA models without feedback. At z ≈ 0.5, observational signals lie between SIMBA run with and without AGN feedback, suggesting AGN in SIMBA may inject too much energy at late times. By convolving our data with a 9.″5 beam corresponding to the TolTEC camera on the Large Millimeter Telescope Alfonso Serrano, we predict a unique profile for AGN feedback that can be distinguished with future higher-resolution measurements. Finally, we explore a novel approach to quantify the nonspherically symmetric features surrounding our galaxies by plotting radial profiles representing the component of the stack with m-fold symmetry.
Funder
NASA ∣ SMD ∣ Astrophysics Division
NSF ∣ MPS ∣ Division of Physics
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献