Small and Large Dust Cavities in Disks around Mid-M Stars in Taurus

Author:

Shi 施 Yangfan 杨帆ORCID,Long 龙 Feng 凤ORCID,Herczeg 沈 Gregory J. 雷歌ORCID,Harsono DanielORCID,Liu YaoORCID,Pinilla PaolaORCID,Ragusa EnricoORCID,Johnstone DougORCID,Bai Xue-NingORCID,Pascucci IlariaORCID,Manara Carlo F.ORCID,Mulders Gijs D.ORCID,Cieza Lucas A.ORCID

Abstract

Abstract High angular resolution imaging by Atacama Large Millimeter/submillimeter Array (ALMA) has revealed the near universality and diversity of substructures in protoplanetary disks. However, disks around M-type pre-main-sequence stars are still poorly sampled, despite the prevalence of M dwarfs in the Galaxy. Here we present high-resolution (∼50 mas, 8 au) ALMA Band 6 observations of six disks around mid-M stars in Taurus. We detect dust continuum emission in all six disks, 12CO in five disks, and 13CO line in two disks. The size ratios between gas and dust disks range from 1.6 to 5.1. The ratio of about 5 for 2M0436 and 2M0450 indicates efficient dust radial drift. Four disks show rings and cavities, and two disks are smooth. The cavity sizes occupy a wide range: 60 au for 2M0412, and ∼10 au for 2M0434, 2M0436, and 2M0508. Detailed visibility modeling indicates that small cavities of 1.7 and 5.7 au may hide in the two smooth disks 2M0450 and CIDA 12. We perform radiative transfer fitting of the infrared spectral energy distributions to constrain the cavity sizes, finding that micron-sized dust grains may have smaller cavities than millimeter grains. Planet–disk interactions are the preferred explanation to produce the large 60 au cavity, while other physics could be responsible for the three ∼10 au cavities under current observations and theories. Currently, disks around mid- to late M stars in Taurus show a higher detection frequency of cavities than earlier-type stars, although a more complete sample is needed to evaluate any dependence of substructure on stellar mass.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3