Abstract
Abstract
Methanol (CH3OH) is an abundant interstellar species and is known to be an important precursor of various interstellar complex organic molecules. Among the methanol isotopologues, CH2DOH is one of the most abundant isotopologues and it is often used to study the deuterium fractionation of CH3OH in interstellar medium. However, the emission lines of CH2DOH can sometimes be optically thick, making the derivation of its abundance unreliable. Therefore, observations of its presumably optically thin 13C substituted species, 13CH2DOH, are essential to overcome this issue. In this study, the rotational transitions of 13CH2DOH have been measured in the millimeter-wave region from 216 GHz to 264 GHz with an emission-type millimeter- and submillimeter-wave spectrometer by using a deuterium and 13C enriched sample. The frequency accuracy of measured 13CH2DOH is less than a few kHz, and the relative line intensity error is less than 10% in most of the frequency range by taking advantage of the wide simultaneous frequency-coverage of the emission-type spectrometer. These results offer a good opportunity to detect 13CH2DOH in space, which will allow us to study the deuterium fractionation of CH3OH in various sources through accurate determination of the CH2DOH abundance.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献