Using Machine Learning to Determine Morphologies of z < 1 AGN Host Galaxies in the Hyper Suprime-Cam Wide Survey

Author:

Tian 田 Chuan 川ORCID,Urry C. MeganORCID,Ghosh AritraORCID,Ofman Ryan,Ananna Tonima TasnimORCID,Auge ConnorORCID,Cappelluti NicoORCID,Powell Meredith C.ORCID,Sanders David B.ORCID,Schawinski KevinORCID,Stark Dominic,Tremblay Grant R.ORCID

Abstract

Abstract We present a machine-learning framework to accurately characterize the morphologies of active galactic nucleus (AGN) host galaxies within z < 1. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low (0 < z < 0.25), mid (0.25 < z < 0.5), and high (0.5 < z < 1.0). By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for ∼60%–70% of the host galaxies from test sets, with a classification precision of ∼80%–95%, depending on the redshift bin. Specifically, our models achieve a disk precision of 96%/82%/79% and bulge precision of 90%/90%/80% (for the three redshift bins) at thresholds corresponding to indeterminate fractions of 30%/43%/42%. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging surveys.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3