Mapping Discrete Galaxies at Cosmic Dawn with 21 cm Observations

Author:

Reis ItamarORCID,Barkana RennanORCID,Fialkov AnastasiaORCID

Abstract

Abstract At cosmic dawn, the 21 cm signal from intergalactic hydrogen was driven by Ly-α photons from some of the earliest stars, producing a spatial pattern that reflected the distribution of galaxies at that time. Due to the large foreground, it is thought that at around redshift 20 it is only observationally feasible to detect 21 cm fluctuations statistically, yielding a limited indirect probe of early galaxies. Here, we show that 21 cm images at cosmic dawn should actually be dominated by large (tens of comoving megaparsecs) high-contrast bubbles surrounding individual galaxies. We demonstrate this using a substantially upgraded seminumerical simulation code that realistically captures the formation and 21 cm effects of the small galaxies expected during this era. Small number statistics associated with the rarity of early galaxies, combined with the multiple scattering of photons in the blue wing of the Ly-α line, create the large bubbles, and also enhance the 21 cm power spectrum by a factor of 2–7 and add to it a feature that measures the typical brightness of galaxies. These various signatures of discrete early galaxies are potentially detectable with planned experiments, such as the Square Kilometer Array and the Hydrogen Epoch of Reionization Array, even if the early stars prove to be formed in dark matter halos with masses as low as 108 M , 10,000 times smaller than the Milky Way halo.

Funder

ISF-NSFC

Israel Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3