Abstract
Abstract
We studied the magnetic field structures and dynamics of magnetized multiphase gas on parsec scales around supermassive black holes by using global 3D magnetohydrodynamics (MHD) simulations. We considered the effect of radiative cooling and X-ray heating due to active galactic nuclei (AGNs). The gas disk consists of a multiphase gas with (1) cold (≤103 K) and thin, and (2) warm (∼104 K) and thick components with a wide range of number densities. The turbulent magnetic energy at maximum is comparable to the thermal and turbulent kinetic energies in the turbulent motion. We confirmed that the turbulent velocity of the warm gas in the ambient cold gas is caused by magnetoconvective instability. The turbulent magnetic field due to magnetorotational instability (MRI) is developed in the disk, but the mean toroidal magnetic field dominates and supports in a quasi-steady state, where the plasma-β, the ratio between gas pressure and magnetic pressure, is low (β < 1). As often seen in adiabatic MHD simulations of rotating disks, the direction of the mean toroidal field periodically reverses with time even in multiphase gas structures. The direction reversal is caused by magnetic flux vertically escaping from the disk and by the combination of the MRI and the Parker instability.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献