Impact of Differential Dust Settling on the SED and Polarization: Application to the Inner Region of the HL Tau Disk

Author:

Ueda TakahiroORCID,Kataoka AkimasaORCID,Zhang ShangjiaORCID,Zhu ZhaohuanORCID,Carrasco-González CarlosORCID,Sierra AnibalORCID

Abstract

Abstract The polarimetric observations of the protoplanetary disk around HL Tau have shown the scattering-induced polarization at ALMA Band 7, which indicates that the maximum dust size is ∼100 μm, while the spectral energy distribution (SED) has suggested that the maximum dust size is approximately a millimeter. To solve the contradiction, we investigate the impact of differential settling of dust grains on the SED and polarization. If the disk is optically thick, a longer observing wavelength traces more interior layers, which would be dominated by larger grains. We find that the SED of the center part of the HL Tau disk can be explained with millimeter-sized grains for a broad range of turbulence strength, while 160 μm–sized grains cannot be explained unless the turbulence strength parameter α t is lower than 10−5. We also find that the observed polarization fraction can be potentially explained with a maximum dust size of 1 mm if α t ≲ 10−5, although models with 160 μm–sized grains are also acceptable. However, if the maximum dust size is ∼3 mm, the simulated polarization fraction is too low to explain the observations even if the turbulence strength is extremely small, indicating a maximum dust size of ≲1 mm. The degeneracy between 100 μm– and millimeter-sized grains can be solved by improving the ALMA calibration accuracy or polarimetric observations at (sub)centimeter wavelengths.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3