The GIGANTES Data Set: Precision Cosmology from Voids in the Machine-learning Era

Author:

Kreisch Christina D.ORCID,Pisani AliceORCID,Villaescusa-Navarro FranciscoORCID,Spergel David N.ORCID,Wandelt Benjamin D.ORCID,Hamaus NicoORCID,Bayer Adrian E.ORCID

Abstract

Abstract We present GIGANTES, the most extensive and realistic void catalog suite ever released—containing over 1 billion cosmic voids covering a volume larger than the observable universe, more than 20 TB of data, and created by running the void finder VIDE on QUIJOTE’s halo simulations. The GIGANTES suite, spanning thousands of cosmological models, opens up the study of voids, answering compelling questions: Do voids carry unique cosmological information? How is this information correlated with galaxy information? Leveraging the large number of voids in the GIGANTES suite, our Fisher constraints demonstrate voids contain additional information, critically tightening constraints on cosmological parameters. We use traditional void summary statistics (void size function, void density profile) and the void autocorrelation function, which independently yields an error of 0.13 eV on ∑ m ν for a 1 h −3 Gpc3 simulation, without cosmic microwave background priors. Combining halos and voids we forecast an error of 0.09 eV from the same volume, representing a gain of 60% compared to halos alone. Extrapolating to next generation multi-Gpc3 surveys such as the Dark Energy Spectroscopic Instrument, Euclid, the Spectro-Photometer for the History of the Universe and Ices Explorer, and the Roman Space Telescope, we expect voids should yield an independent determination of neutrino mass. Crucially, GIGANTES is the first void catalog suite expressly built for intensive machine-learning exploration. We illustrate this by training a neural network to perform likelihood-free inference on the void size function, giving a ∼20% constraint on Ωm. Cosmology problems provide an impetus to develop novel deep-learning techniques. With GIGANTES, machine learning gains an impressive data set, offering unique problems that will stimulate new techniques.

Funder

National Science Foundation

National Aeronautics and Space Administration

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Void number counts as a cosmological probe for the large-scale structure;Monthly Notices of the Royal Astronomical Society;2024-09-09

2. Why cosmic voids matter: mitigation of baryonic physics;Journal of Cosmology and Astroparticle Physics;2024-08-01

3. Cosmology from One Galaxy in a Void?;The Astrophysical Journal Letters;2024-07-24

4. Neutrino Mass Constraint from an Implicit Likelihood Analysis of BOSS Voids;The Astrophysical Journal;2024-07-01

5. An antihalo void catalogue of the Local Super-Volume;Monthly Notices of the Royal Astronomical Society;2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3