On the Energy-specific Photodissociation Pathways of 14N2 and 14N15N Isotopomers to N Atoms of Different Reactivity: A Quantum Dynamical Perspective

Author:

Gelfand NataliaORCID,Komarova KseniaORCID,Remacle FrancoiseORCID,Levine Raphael D.ORCID

Abstract

Abstract Photodissociation of the nitrogen molecule in the vacuum ultraviolet (VUV) is a major source of reactive nitrogen atoms in the upper atmosphere of Earth and throughout the solar system. Recent experimental studies have revealed strong energy dependence of the VUV photodissociation branching ratios to the N(4S3/2)+N(2D J ) and N(4S3/2)+N(2P J ) product channels, the primary dissociation pathways in the 108,000–116,000 cm−1 energy region. This produces N(2D J ) and N(2P J ) excited atoms that differ significantly in their chemical reactivity. The branching ratios oscillate with increase in the VUV excitation energy. We use high-level ab initio quantum chemistry to compute the potential curves of 17 electronic excited states and their nonadiabatic and spin–orbit couplings. The dynamics follow the sequential evolution from the optically excited but bound 1 Σ u + singlets. Spin–orbit coupling enables transfer to the dissociative triplet and quintet states. We compute the photodissociation yields through the dense manifold of electronic states leading to both exit channels. The dynamical simulations accurately capture the branching oscillations and enable a detailed look into the photodissociation mechanism. The major contribution to the dissociation is through the two lowest 3Π u states. However, for both isotopomers, at about 110,000 cm−1 there is an abnormally low dissociation rate into the N(4S3/2)+N(2P J ) channel that enables comparable participation of triplet 3 Σ u and quintet 5Π u electronic states. This leads to the first peak in the branching ratio. At higher energies, trapping of the population in the 33Π u bound triplet state occurs. This favors dissociation to the lower-energy N(4S3/2)+N(2D J ) channel and results in the observed second switch in branching ratios.

Funder

Fonds De La Recherche Scientifique - FNRS

United States–Israel Binational Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3