Spectra of GRB 221009A at Low Energies Derived from Ground-based Very Low-frequency Measurements

Author:

Cheng WenORCID,Xu WeiORCID,Xiong ShaolinORCID,Gu XudongORCID,Ni BinbinORCID,Wang Chenwei,Zhang Yanqiu,Wang Shiwei,Feng Jingyuan,Pan Yudi,Xu Haotian,Ma Wenchen

Abstract

Abstract The gamma-ray burst (GRB) event GRB 221009A was the brightest event that has ever been detected to date. Owing to its unexpected brightness, the temporal and/or spectral information of the prompt emission cannot be accurately measured by many satellites (with the only exception of GECAM-C), since they suffered from significant pulse pileup and data saturation effects. Similarly, the X45 solar flare event occurring on 2003 November 4 saturated space-borne X-ray detectors, and it was through ground-based measurements of very low-frequency (VLF) signals that the magnitude of this event was determined, since VLF signals are particularly sensitive to the disturbance on the D-region ionosphere caused by low-energy photons. Therefore, in this study, we first report measurements of VLF signals from the JJI and VTX transmitter as recorded in Shiyan, China, when GRB 221009A occurred. The amplitude change was ∼1.25 and ∼2.31 dB for the JJI and VTX transmitter, respectively. Using a suite of well-validated models, we have further simulated the influence on the D-region ionosphere induced by low-energy photons (<100 keV) of GRB 221009A. Compared with the pre-GRB condition, the electron density was enhanced by 39.75% and 626.61% at 60 and 70 km altitude for the VTX-SYS path and 39.73% and 621.11% at 60 and 70 km altitude for the JJI-SYS path, respectively, with the altitude of notable electron density change being as low as ∼30 km. Moreover, we have compared modeling results of VLF signal change with our measurements during GRB 221009A. The good agreements obtained in terms of amplitude change and overall trend validate the fluxes and spectra of GRB 221009A at low energies (<20 keV) as measured by GECAM-C.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

B-type Strategic Priority Program of the Chinese Academy of Sciences

Open Fund of Hubei Luojia Laboratory

The Xplorer Prize

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3