Occurrence of Kelvin–Helmholtz Instability at Lunar Distance Magnetopause: ARTEMIS Observation

Author:

Feng J. Y.ORCID,Zhou Y.ORCID,Lu J. Y.ORCID,Wang M.ORCID,Li J. Y.ORCID,Zhang H. X.ORCID,Tang F.,Yue F. L.

Abstract

Abstract Kelvin–Helmholtz waves can be observed frequently at the near-Earth magnetopause and play an important role in the transport of particles, momentum, and energy from the solar wind to the magnetosphere. This work analyzes the occurrence of Kelvin–Helmholtz instability (KHI) at lunar distance magnetopause, which has not been thoroughly studied currently based on Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun satellite observations, and it also investigates the effect of the upstream solar wind and interplanetary magnetic field (IMF). Statistical results show that (1) the occurrence rate is about 15% of the time at lunar distance, lower than at the flank magnetopause, and (2) the occurrence rate decreases with the magnetoacoustic Mach number, Alfvén Mach number, solar wind velocity, and dynamic pressure but only shows a slightly positive correlation with solar wind density. Unlike at the dayside magnetopause, the occurrence rate of KHI diminishes as the solar wind velocity increases at the lunar distance magnetopause, and (3) the occurrence rate decreases with IMF amplitude and is influenced by IMF orientation. As a function of the IMF clock angle, the occurrence rate reaches its maximum at ∼24% when the clock angle is zero. The statistical results are basically consistent with the currently accepted linear theory of KHI, except for a lower rate for higher-speed solar wind. This work contributes to understanding the excitation and evolution of KHI along the magnetopause and plasma transport process in the tail magnetopause.

Funder

MOST ∣ National Natural Science Foundation of China

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3