Impact of 3D Structure on Magnetic Reconnection

Author:

Daldorff Lars K. S.ORCID,Leake James E.ORCID,Klimchuk James A.ORCID

Abstract

Abstract Results from 2.5D and 3D studies of the onset and development of the tearing instability are presented, using high-fidelity resistive MHD simulations. A limited parameter study of the strength of the reconnecting field (or shear angle) was performed. An initially simple 1D equilibrium was used, consisting of a modified force-free current sheet, with periodic boundary conditions in all directions. In all cases, the linear and nonlinear evolution led to a primary current sheet between two large flux ropes. The global reconnection rate during this later stage was analyzed in all simulations. It was found that in 2.5D the primary current sheet fragmented owing to plasmoids, and as expected, the global reconnection rate, calculated using multiple methods, increases with the strength of the reconnecting field owing to a stronger Alfvén speed. In 3D, the presence of interacting oblique modes of the tearing instability complicates the simple 2.5D picture, entangling the magnetic field of the inflow and introducing a negative effect on the reconnection rate. The two competing effects of stronger Alfvén speed and entangling, which both increase with the strength of the reconnecting field, resulted in a decrease in the reconnection rate with increasing reconnecting field. For all simulations, the 3D rates were less than in 2.5D but suggest that as one goes to weak reconnecting field (or strong guide field) the system becomes more 2.5D-like and the 2.5D and 3D rates converge. These results have relevance to situations like nanoflare heating and flare current sheets in the corona.

Funder

NASA Living With a Star

NASA’s Internal Scientist Funding Model

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional Turbulent Reconnection within the Solar Flare Current Sheet;The Astrophysical Journal Letters;2023-09-01

2. (When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?;The Astrophysical Journal;2022-12-01

3. MHD turbulence: a biased review;Journal of Plasma Physics;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3